Two distinct mechanisms for differential positioning of gene expression borders involving the Drosophila gap protein giant.
نویسندگان
چکیده
We have combined genetic experiments and a targeted misexpression approach to examine the role of the gap gene giant (gt) in patterning anterior regions of the Drosophila embryo. Our results suggest that gt functions in the repression of three target genes, the gap genes Krüppel (Kr) and hunchback (hb), and the pair-rule gene even-skipped (eve). The anterior border of Kr, which lies 4-5 nucleus diameters posterior to nuclei that express gt mRNA, is set by a threshold repression mechanism involving very low levels of gt protein. In contrast, gt activity is required, but not sufficient for formation of the anterior border of eve stripe 2, which lies adjacent to nuclei that express gt mRNA. We propose that gt's role in forming this border is to potentiate repressive interaction(s) mediated by other factor(s) that are also localized to anterior regions of the early embryo. Finally, gt is required for repression of zygotic hb expression in more anterior regions of the embryo. The differential responses of these target genes to gt repression are critical for the correct positioning and maintenance of segmentation stripes, and normal anterior development.
منابع مشابه
Positioning adjacent pair-rule stripes in the posterior Drosophila embryo.
We present a genetic and molecular analysis of two hairy (h) pair-rule stripes in order to determine how gradients of gap proteins position adjacent stripes of gene expression in the posterior of Drosophila embryos. We have delimited regulatory sequences critical for the expression of h stripes 5 and 6 to 302 bp and 526 bp fragments, respectively, and assayed the expression of stripe-specific r...
متن کاملKnown maternal gradients are not sufficient for the establishment of gap domains in Drosophila melanogaster
Gap genes are among the first transcriptional targets of maternal morphogen gradients in the early Drosophila embryo. However, it remains unclear whether these gradients are indeed sufficient to establish the boundaries of localized gap gene expression patterns. In this study, we address this question using gap gene circuits, which are data-driven mathematical tools for extracting regulatory in...
متن کامل18-P004 Complex movements of segmentation gene expression domains in Drosophila homozygous Krüppel mutants
Krüppel (Kr) is a segmentation gene which plays one of the key morphogenetic roles in early development of Drosophila. In order to better elucidate the regulatory role of this gene, we analyzed quantitative expression patterns of other segmentation genes in homozygous Kr mutants. During cleavage cycle 14A the posterior domain of giant (gt) and even-skipped (eve) stripe 7 are significantly shift...
متن کاملTranscriptional regulation of a pair-rule stripe in Drosophila.
The periodic, seven-stripe pattern of the primary pair-rule gene even-skipped (eve) is initiated by crude, overlapping gradients of maternal and gap gene proteins in the early Drosophila embryo. Previous genetic studies suggest that one of the stripes, stripe 2, is initiated by the maternal morphogen bicoid (bcd) and the gap protein hunchback (hb), while the borders of the stripe are formed by ...
متن کامل18-P006 Deciphering the pax6 transcription network
Krüppel (Kr) is a segmentation gene which plays one of the key morphogenetic roles in early development of Drosophila. In order to better elucidate the regulatory role of this gene, we analyzed quantitative expression patterns of other segmentation genes in homozygous Kr mutants. During cleavage cycle 14A the posterior domain of giant (gt) and even-skipped (eve) stripe 7 are significantly shift...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 125 19 شماره
صفحات -
تاریخ انتشار 1998